
i(ll-conditioned)LQR for Off-Road Trajectory
Optimization?

Matthew Sivaprakasam
Carnegie Mellon University

Pittsburgh, U.S.A
msivapra@andrew.cmu.edu

Nayana Suvarna
Carnegie Mellon University

Pittsburgh, U.S.A
nsuvarna@andrew.cmu.edu

Thomas Detlefsen
Carnegie Mellon University

Pittsburgh, U.S.A
tdetlefs@andrew.cmu.edu

Abstract—Model Predictive Path Integral (MPPI) control is
the standard for off-road autonomy due to its sampling-based
nature. Its processing can be parallelized using a GPU and it can
be applied to non-differentiable costmaps which is useful when
dealing with costmaps generated by neural networks. However,
this method comes with drawbacks since it requires a GPU to
run in real-time, it requires the constant rollout of actions, and
can be highly stochastic. In this work, we explore using iterative
Linear Quadratic Regulator (iLQR) control in the context of
off-road autonomy, addressing the challenges of gradients and
hessians from a neural-network based costmap, and latency and
systems without GPU.

Index Terms—Model Predictive Control (MPC), Iterative Lin-
ear Quadratic Regulator (iLQR), Model Predictive Path Integral
Control (MPPI)

I. INTRODUCTION

Navigation in off-road terrain presents many challenges due
to the unstructured and irregular nature of the environment.
Vehicles have to adapt to mud, ditches, steep slopes, height ir-
regularities and other conditions that aren’t present in standard
on-road driving scenarios. They have to quickly and effectively
adapt to these conditions to ensure the safety of passengers as
well as minimize damage to the vehicle.

State of the art approaches rely on Model Predictive Path
Integral (MPPI) to efficiently plan in off-road environments.
This process consists of sampling random actions, feeding
them into a dynamics model to get a set of trajectories, and
then picking the trajectory with the lowest cost. Although
effective, MPPI requires a GPU to process a large set of
trajectories in real time. This can make it infeasible to run
on platforms with limited compute or in scenarios where the
set of possible trajectories can’t easily be modeled.

In this work, we propose a method for using iterative
Linear Quadratic Regulator (iLQR) for trajectory optimization
in off-road environments. We use it to optimize the lowest
cost trajectory from a pre-computed library of trajectories
generated using the kinematic bicycle model. The novelty in
our approach lies behind using imperfect costmaps generated
from inverse reinforcement learning.

• A framework for utilizing noisy costmaps for iLQR
• A real-time implementation of iLQR that uses CPU alone
This paper is organized as follows: Section II reviews related

works. Section III outlines our proposed iLQR method and the
various components of our system. Section IV steps through

our qualitative and quantitative results. Section V provides our
conclusion and touches upon future work.

Fig. 1: Autonomous All-Terrain Vehicle Platform used for data
collection and deployment

II. RELATED WORK

We can split the related works into three categories: the
way the environment is represented through costmaps, existing
approaches using MPPI, and existing approaches using iLQR.

A. Costmaps

Navigating in off-road environments requires an accurate
representation of the environment that encodes traversability.
Often, this is represented through a binary occupancy grid
where areas with obstacles such as terrain height, curvature,
and roughness [5], [6] are marked as occupied while remaining
cells are marked as free. Although these approaches can
provide compact representations, they lose information on the
degree of traversability for regions spanning the map.

Representing the terrain instead as a costmap allows for
greater degree of granularity and enables higher-level rea-
soning over which regions of the map are more travesable
over others. This can be done through a controller or local
and global planner. Costmaps are based on a variety of
measurements from different sensors over multiple time steps.
It can be difficult to incorporate these observations using
traditional methods, instead learning based methods can be



used. S. Treist et al [2] presents an inverse reinforcement
learning method to generate costmaps under uncertainty. We
use the costmaps generated from this method as the underlying
costmaps for our method.

Fig. 2: Simple example MPPI problem for a wheeled vehicle,
where randomly-sampled actions are rolled out and the best
one that stays within the road is chosen.

B. Model Predictive Path Integral (MPPI)

MPPI is the standard approach for control on off-road
autonomous vehicles. This is due to the sampling-based nature
which allows MPPI to select the lowest cost trajectory based
on non-differentiable environment representations. These can
include methods such as a costmap generated by a neural
networks [9]. [7] uses MPPI for an aggressive driving task
with dynamics from neural networks. In [8] MPPI is used to
incorporate traversability constraints based on rollouts to the
elevation map.

Although effective, MPPI often requires a GPU and a dense
trajectory library in practice in order to achieve real-time
results. As a result, it is not as effective on edge devices with
limited compute. This is our primary motivation for exploring
using iLQR instead.

C. Iterative Linear Quadratic Control (iLQR)

iLQR is a common control method for many applications
from biological movement systems [11] to UAV transport
[12], but it is not often used for off-road autonomous driving
because it requires the gradient and hessian of the costmap in
order to perform the backward pass. Since costmaps can be
generated by neural networks, they may not be differentiable
and as a result cannot be used for iLQR directly.

In order to use costmaps with iLQR, the costmap can
be modified to be differentiable. [10] presents a method
that modifies the costmap to represent dangerous terrains
through a combination of gaussian distributions. While this
does make the costmap differentiable, it effectively creates a
binary costmap and loses the intermediate information about
traversability.

III. METHOD

A. Overview

Our goal is to safely navigate through complex off-road
terrain by producing trajectories whose costs have been opti-
mized over a costmap in order to traverse challenging terrain
and avoid unsafe obstacles. The costmap is produced using
inverse reinforcement learning. We initialize the iLQR process
with the trajectory from a pre-computed trajectory library that
has the lowest navigation cost on the costmap. For simplicity
in this experiment, navigation ”cost” comes directly from the
costmap rather than also including costs derived from distance-
to-goal and other common costs.

B. Learned Costmap

We use the inverse reinforcement learning process described
in [2], through which a neural network is trained to observe
geometric feature maps and predict a costmap that guides a
planner to match previous expert demonstrations. The training
data comes from TartanDrive 2.0 [13]. As shown in the work
by Triest et. al., the costmap is expressive enough to use with
gradient-free planners like MPPI to safely navigate difficult
terrain. In this work we explore its viability in a trajectory-
optimization approach that requires informative gradients and
hessians that aren’t necessarily guaranteed to be present in the
output of a neural network.

C. Autonomy Platform

The costmaps we used for our method was generated
through sensor data from a Yamaha Viking All-Terrain Vehicle
(ATV) platform as seen in Fig. 1. The sensor payload on the
vehicle includes three lidars, a stereo camera, a GNSS system,
wheel encoders, and shock travel sensors. The data is collected
at a 255 acre test site in Monroeville, Pennsylvania.

D. Vehicle Model

We use a kinematic bicycle model (KBM) to predict the
robot’s future states given an initial state and sequence of
actions. Although it is a rather simple model, it has been shown
to be sufficient in several prior works that use MPPI for off-
road autonomous driving [2]. As an additional advantage, its
simplicity makes it easy to differentiate at given states.

Our state space is X = [x, y, θ] and control space is U =
[v, δ], where x, y are coordinates in 2D space, v is velocity, θ
is heading angle, δ is steering angle, and L is the wheelbase.
The state transition for the model is as follows:

ẋ = v cos(θ)

ẏ = v sin(θ)

θ̇ = v
tan δ

L

(1)

We also show the jacobian with respect to the state space and
control space:

∂f

∂x
=

0 0 −vsinθ
0 0 vcosθ
0 0 0

 (2)



Fig. 3: Simulated view of the autonomous navigation stack. The ATV navigates by traversing low-cost regions according to a
costmap (purple is low cost and red is hight cost).

∂f

∂u
=

 cosθ 0
sinθ 0
tan(δ)

L v sec2δ
L

 (3)

E. Trajectory Initialization

Because of the expressive nature of the costmap, it is
possible (and in fact highly likely) for several local minima
to be present. For example if provided an initial trajectory
that goes through tall grass, an optimizer might find the
smoothest part of the tall grass and ignore the more-traversable
trail that goes in a different direction. To circumvent this
issue, we initialize with the best trajectory from a trajectory
library computed offline. We generate this by sequentially
sampling inputs consisting of velocities ranging from 0 to 6m/s
and steering rates from 0 to .3 radians/s. We then compute
a trajectory for each sample by rolling it out through the
kinematic bicycle model for 50 timesteps, where each timestep
is 0.1 seconds. To compute the cost for a trajectory, we find
the corresponding cost in the costmap for each point, and sum
all the costs together. The selected trajectory at the end of
this stage is the one with the lowest total cost with respect to
the costmap. Since the trajectory library covers a wide area
in front of the robot, it can be used to determine find the
approximately optimal region of the costmap which in turn
provides a sufficient initialization for the next stage to optimize
to a good solution as shown in 5.

F. Pre-Computed Gradients and Hessians

The costmap remains static within the optimization process
(we optimize at each timestep), and the cost values come
directly from the x, y location on the map and rely on no
other information. This means that not only is differentiating
the costmap with respect to the state simple, but it can also be
easily pre-computed for every point on the map in parallel
simply by taking differentiating as many times as needed
in the x, y directions. Then, during the different stages of

Fig. 4: Trajectory library used for planning

Fig. 5: As an initialization for the iLQR process, we provide
the lowest cost trajectory (blue is lowest cost, yellow is
highest) according to the costmap.

the optimization process, those gradients are readily available
simply by indexing into the differentiated map at a given state.

Since the predicted costmap is the output of a neural
network, the gradients aren’t always guaranteed to suitable for



optimization. As shown in 6, challenges such as noise, distinct
boundaries, and low resolution can be present. To alleviate
this, we apply a Gaussian Blur to the entire costmap in the
hope that the smoothing affect provides bettery gradients for
the optimizer to follow 7.

Fig. 6: Example costmap, produced using inverse reinforce-
ment learning, to be used in optimization

G. iLQR on Learned Costmaps

1) Overview: We use an iterative Linear Quadratic Regu-
lator (iLQR) to optimize the initial trajectory, following the
standard process of integrating backwards from the end to
calculate cost-to-go and its derivatives using dynamic pro-
gramming in order to determine how to adjust the control
inputs (backward pass). We then roll out the new control
inputs, performing a line search to determine how much to
adjust without overshooting (forward pass).

2) Backward Pass: We follow the procedure outlined in
Algorithm 1 to perform the backward pass, where Xref
and Uref are the initial trajectory and corresponding control
inputs, and X and U contain the final outputs at the end of the
optimization process. We employ the following cost function,
where costmap(x) denotes the cost value from the costmap
at point x and Qc is it’s weight relative to the other weights
Q,R:

J =
1

2
(xN − xref,N )TQN (xN − xref,N )

+
1

2
Qccostmap(xN )2

+

N−1∑
k=0

1

2
(xk − xref,k)

TQk(xk − xref,k)...

+
1

2
(uk − uref,k)

TRk(uk − uref,k)...

+
1

2
Qccostmap(xk)

2

(4)

Since the costmap cost is solely dependent on state and
doesn’t affect the control gradients/hessians d2J

du2 ,
dJ
du , they can

be calculated as expected by differentiating the cost function
and ignoring the costmap component. For calculating the state

Algorithm 1 Pseudocode for iLQR Backward Pass

1: P = zeros([N, nx, nx])
2: p = zeros([N, nx, 1])
3: d = zeros([N − 1, nu, 1])
4: K = zeros([N − 1, nu, nx])

5: d2J
dx2 ,

dJ
dx ← terminal cost expansion(X[−1], Xref [−1])

6: P [−1]← d2J
dx2

7: p[−1]← dJ
dx

8: dJ ← 0.0
9: for k from N − 2 downto 0 do

10: d2J
dx2 ,

dJ
dx ,

d2J
du2 ,

dJ
du ←

stage cost expansion(X[k], U [k], Xref [k], Uref [k], k)

11: ∂f
∂x ,

∂f
∂u ← dynamics jacobian(X[k], U [k])

12: gx ← dJ
dx + ∂f

∂x

T
· p[k + 1]

13: gu ← dJ
du + ∂f

∂u

T
· p[k + 1]

14: Gxx ← d2J
dx2 + ∂f

∂x

T
· P [k + 1] · ∂f∂x

15: Guu ← d2J
du2 + ∂f

∂u

T
· P [k + 1] · ∂f∂u

16: Gxu ← ∂f
∂x

T
· P [k + 1] · ∂f∂u

17: Gux ← ∂f
∂u

T
· P [k + 1] · ∂f∂x

18: d[k]← pinv(Guu) · gu
19: K[k]← pinv(Guu) ·Gux

20: p[k]← gx−K[k]T ·gu+K[k]T ·Guu ·d[k]−Gxu ·d[k]
21: P [k] ← Gxx + K[k]T · Guu · K[k] − Gxu · K[k] −

K[k]T ·Gux

22: dJ ← dJ + gTu · d[k]
23: end for

gradients/hessians, the costmap is differentiated and indexed
as described in section IV.E . An example of the gradients and
hessians of the costmaps are shown in Figs. 7, 8.

3) Forward Pass: In the forward pass, we use the d,K
matrices produced in the backward pass to modify the current
control inputs. Starting with a term α = 1.0, we weight the
adjustment by α. If the cost of the new trajectory is not greater
than the previous, then we halve α and try again, iterating this
process until we achieve a better trajectory.

Fig. 7: An example of the x and y gradients after applying a
Gaussian blur to the costmap



Fig. 8: An example of the hessian after applying a Gaussian
blur to the costmap

IV. RESULTS

For our experiments, we follow the formulation described in
the methods section, selecting a trajectory from the trajectory
library and using that as an initialization for iLQR. We allow
iLQR to run for up to 10 iterations unless it converges earlier.
Internally, the forward pass is allowed to iterate 15 times.
For the costmap blurring, we use a kernel size of 5, which
corresponds to a 2.5m square. We found that in practice,
although the costmap is the main cost being optimized for, it
was still necessary to include a small cost weight for tracking
the original initial trajectory states. The final cost weights we
chose were Q = .0001, R = 0, Qf = .3, Qc = 1.5.

Qualitatively, we find that this method can find a better path,
and quantitatively we see a decrease in the overall cost of the
trajectory on the costmap after optimization. To demonstrate
more dramatic effects, we also tested a poor initialization by
choosing the worst trajectory from the library and optimizing
on that instead. As shown in 9, even despite a poor reference
trajectory the optimizer is able to converge to a path that better
avoids the high-cost regions.

In order to get our implementation to work in real-time at
a rate comparable to our existing MPPI controller (>10Hz),
we re-wrote our prototyped functions in Numba in order to
enable just-in-time (JIT) compilation. The latency reduction
achieved through this approach can be shown in Table 1. This
increase in speed is impactful enough that we expect to be able
to integrate more complex pieces (for example, sophisticated
vehicle models) without losing real-time capability.

Forward
Pass

Forward
Pass

Numba

Backward
Pass

Backward
Pass

Numba
Worst
Case

Speed (s)
0.27 0.004 0.04 0.0005

V. CONCLUSIONS AND FUTURE WORK

In this work, we explored a framework for utilizing noisy
costmaps for iLQR on off-road autonomous vehicles that can
run in real-time. Our method can be run on real-time on a
CPU alone and does not require a dense trajectory library to
create expressive paths around high-cost regions on a costmap.

In the future, we plan to make improvements to this method
by improving the line search using the Wolfe conditions. When
testing our implementation, we noticed that in some cases with
the forward pass we observed weird behavior when following
our current approach to determine step length. Using the Wolfe
conditions could help determine step length more effectively.

We also plan to use a modified version of KBM that uses
throttle and steering rate for more realistic dynamics. The
current control input formulation of velocity and steering rate
is not realistic for our vehicle. The input that controls velocity
in this case is throttle, which has a non-linear mapping to
velocity. We will experiment with using more sophisticated
vehicle models that predict these processes more effectively,
and maybe even explore using learned dynamics models.
Since these models are not as easily differentiable, we would
also explore using sampling methods to approximate their
derivatives, such as in [3].

Finally, we plan to deploy this work on the Yamaha Viking
and evaluate it against MPPI. This entails setting up a number
courses at our test site that challenge various potential short-
comings of the two methods to see which one consistently
performs better. We also need to come up with a fair way
of evaluating them since one relies heavily on GPU and
the other relies on CPU. We at least plan on keeping both
implementations in the same language but we will consult
more experts in this area in order to set up this evaluation in
a sound manner.

ACKNOWLEDGMENT

This report was developed for Dr. Zachary Manchester’s
class Optimal Control and Reinforcement Learning. We would
like to thank Dr. Manchester and his teaching assistants for
their help during the development of this work. We would also
like to thank Joshua Spisak for his advice when developing
the idea for this work, and Samuel Triest for providing the
learned costmaps on which we based our work.

REFERENCES

[1] Y. Ding ”Simple Understanding of Kinematic Bicycle Model”
[2] S. Triest, M. Guaman Castro, P. Maheshwari, M. Sivaprakasam, W.

Wang, S. Scherer ”Learning Risk-Aware Costmaps via Inverse Re-
inforcement Learning for Off-Road Navigation” IEEE International
Conference on Robotics and Automation, May 2023

[3] Z. Manchester, S. Kuindersma ”Derivative-Free Trajectory Optimization
with Unscented Dynamic Programming” IEEE Conference on Decision
and Control, Dec. 2016

[4] B. Plancher, Z. Manchester, S. Kuindersma ”Constrained Unscented Dy-
namic Programming” IEEE/RSJ International Conference on Intelligent
Robots and Systems, Sept. 2017

[5] P. Krusi, P. Furgale, M. Bosse, and R. Siegwart, “Driving on point
clouds: Motion planning, trajectory optimization, and terrain assess-
ment in generic nonplanar environments,” Journal of Field Robotics,
vol. 34, no. 5, pp. 940–984, 2017.



Fig. 9: Four examples of paths generated (yellow) based off the worst cost trajectory (red). The generated paths avoid the high
cost regions (green-yellow) while still attempting to reach the final position.

[6] P. Fankhauser, M. Bjelonic, C. D. Bellicoso et al., “Robust rough-
terrain locomotion with a quadrupedal robot,” in 2018 IEEE Interna-
tional Conference on Robotics and Automation (ICRA). IEEE, 2018,
pp. 5761–5768.

[7] G. Williams, N. Wagener, B. Goldfain, P. Drews, J. M. Rehg, B.
Boots, E. A. Theodorou, ”Information Theoretic MPC for Model-Based
Reinforcement Learning” in 2017 IEEE International Conference on
Robotics and Automation (ICRA)

[8] T. Han, A. Liu, A. Li, A. Spitzer, G. Shi, B. Boots ”Model Predictive
Control for Aggressive Driving Over Uneven Terrain” Nov. 2023

[9] X. Cai1, M. Everett, L. Sharma1, P. R. Osteen, and J. P. How1
”Probabilistic Traversability Model for Risk-Aware Motion Planning in
Off-Road Environments” Jul. 2023

[10] D. Fan , A. Agha-mohammadi, E. A. Theodorou ”Learning Risk-Aware
Costmaps for Traversability in Challenging Environments” in 2022 IEEE
Robotics and Automation Letters. IEEE, 2022, pp. 279-286.

[11] W. Li, E. Todorov ”Iterative Linear Quadratic Regulator Design for
Nonlinear Biological Movement Systems” 1st International Conference
on Informatics in Control, Automation and Robotics

[12] Y. Alothman, D. Gu ”Quadrotor Transporting Cable-Suspended Load
using iterative Linear Quadratic Regulator (iLQR) Optimal Control” in
2016 8th Computer Science and Electronic Engineering (CEEC)

[13] M. Sivaprakasam, P. Maheshwari, M. Guaman Castro, S. Triest, M. Nye,
S. Willits, A. Saba, W. Wang, and S. Scherer ”TartanDrive 2.0: More
Modalities and Better Infrastructure to Further Self-Supervised Learning
Research in Off-Road Driving Tasks” Feb. 2024


