
MPPI for Robust & Efficient Racing
Aman Goel

Carnegie Mellon University
Pittsburgh, USA

amangoel@andrew.cmu.edu

Thomas Detlefsen
Carnegie Mellon University

Pittsburgh, USA
tdetlefs@andrew.cmu.edu

Brian Park
Carnegie Mellon University

Pittsburgh, USA
brianp2@andrew.cmu.edu

Abstract—Autonomous driving requires vehicles to make safe
decisions quickly while navigating a complex dynamic envi-
ronment. Autonomous racing faces similar challenges, but at
a much higher speed. A higher velocity leads to a heavier
reliance on accurate vehicle dynamics and requires faster decision
making. To tackle this problem, we propose the implementation
of a GPU-enabled MPPI on the F1Tenth autonomous racing
platform tested in simulation and the real world. Additionally
we propose comparing the performance of MPPI to traditional
algorithms such as RRT in terms of lap-time and computational
speed. Our implementation is available at: https://github.com/
t-detlefsen/f1tenth mppi

Index Terms—Autonomous Racing, Model Predictive Control,
Model Predictive Path Integral Control (MPPI), Rapidly Explor-
ing Random Trees (RRT)

I. INTRODUCTION

Autonomous vehicles in the real-world are expected to
handle dynamic, robust environments. These environments
include paths with complex geometry, aggressive drivers, and
obstacle avoidance. In these scenarios, control algorithms must
be computed quickly, while also taking into account vehicle
dynamics, in order to safely maneuver through these scenarios.

Our project aims to represent this issue that self-driving
vehicles face through autonomous racing. Autonomous race-
cars must handle difficult environments at extremely high
speeds. Due to its ability to efficiently handle complex spaces,
Model Predictive Path Integral (MPPI) control is a powerful
algorithm for real-time control for autonomous systems. Un-
like traditional planning algorithms, MPPI leverages sampling
to evaluate numerous trajectories, which helps alleviate the
amount of uncertainties that our system faces in dynamic
environments. This approach has proven advantageous in high-
speed autonomous applications, such as racing vehicles [6],
drones [7], and robotic manipulators [8], where rapid decision-
making and robustness are paramount.

In autonomous racing scenarios, conventional planning
methods like RRT [2] often face limitations because of its
efficiency and slow responsiveness to dynamic environments.
These methods heavily relies on pre-computation, so it cannot
react to real-time changes to the environment. To address these
shortcomings, our research explores the efficacy of MPPI by
exploiting its computational strengths, particularly its ability
to harness parallelization through GPU acceleration. We aim
to investigate the efficiency of our MPPI algorithm ran across
different types of hardware. It is known to be faster when ran
on the GPU, but we also compare its efficiency when ran on

the CPU against other planning methods. Ultimately, we seek
to leverage MPPI’s strengths to enable safer, faster, and more
reliable autonomous racing performance.

II. RELATED WORKS

Rapidly exploring Random Trees (RRTs) [2] are widely
used in robotic motion planning for efficiently navigating
high dimensional and complex spaces. By incrementally build-
ing a tree through random sampling, RRTs can quickly
explore feasible paths toward a goal, making them suitable
for environments with dynamic constraints. While RRTs are
simple, flexible, and probabilistically complete, they often
produce suboptimal paths and require parameter tuning and
post processing for refinement. Variants like RRT* [3] have
been developed to address these limitations and improve path
quality.

A* [5] is a classic graph based path planning algorithm that
guarantees optimal paths using a cost function combining path
cost and heuristic estimates. It performs well in grid based and
structured environments but struggles in high dimensional or
continuous spaces. In such cases, sampling based methods like
RRT or probabilistic approaches like MPPI are more efficient.

There has also been many works [6] that have applied MPPI
on autonomous race cars. This work targets the problem of
multi-vehicle interactions using a modified version of MPPI,
called Best-Response MPPI (BR-MPPI).

Arruda et al. [8] applied Model Predictive Path Integral
(MPPI) control to robustly plan push manipulations using
learned forward models. By leveraging uncertainty aware
learning methods like Gaussian Processes and Mixture Density
Networks, their planner actively avoids regions of high model
uncertainty.

Model Predictive Path Integral (MPPI) control has garnered
increasing attention for its ability to handle nonlinear dynam-
ics and high-speed, constrained planning tasks in real time.
Williams et al. [10] introduced a foundational MPPI-based
framework for aggressive driving, demonstrating real-time
trajectory optimization on a fifth-scale autonomous rally car
using GPU-accelerated stochastic sampling. Their formulation
merges information-theoretic principles with stochastic opti-
mal control, enabling aggressive maneuvers without reliance
on predefined trajectories.

Building on this, Testouri et al. [11] proposed a refined
MPPI framework aimed specifically at autonomous driving
systems, emphasizing safety critical scenarios. Their approach

https://github.com/t-detlefsen/f1tenth_mppi
https://github.com/t-detlefsen/f1tenth_mppi


introduces obstacle-aware cost functions and utilizes circular
approximations to represent obstacles in real-time planning.
Validated on a full sized autonomous KIA Soul EV, the
method proved capable of executing smooth merges, obstacle
avoidance, and vehicle following behaviors, demonstrating
safety and feasibility under real world constraints.

These contributions underscore the potential of MPPI as a
robust, scalable solution for both racing and urban autonomous
scenarios. Our work seeks to extend these foundations by ap-
plying MPPI to high-speed autonomous racing on the F1Tenth
platform, comparing its performance to classical planners like
RRT under constrained computational and dynamic conditions.

III. APPROACH

MPPI is a sampling-based form of MPC which solves an
optimization problem, takes the first action, and repeats this
process for every time step. The MPPI algorithm is summa-
rized in Fig. 1 which shows the race line and environment
map as inputs. The algorithm consists of a trajectory generator
which feeds trajectories to the cost function which returns
the best control action. Each of these components will be
described in further detail below. A major advantage of MPPI
is that it is highly parallelizable. We tested by attempting to
accelerating the algorithm on the GPU. The overal process is
summarized in Fig. II

Fig. 1. Overview of the MPPI algorithm. Trajectories are generated and
measured using a cost function which relies on a race line and environment
map to compute the best control action.

A. Inputs and Outputs

• Race line - MPPI functions as a local planner which
tracks a global race line. The race line consists of position
(x, y), orientation yaw, and velocity v.
• Environment Map - A representation of the environment

is required to determine which areas are drivable. This is
represented by an binary occupancy grid where areas are
marked as free or obstacles. Cells in the occupancy grid may
also be obstacle probabilities or a lower cost can be added
around obstacles to encourage clearance.

• Control Action - The goal of MPPI is to determine the
control action for the next time step. In the case of the F1Tenth
autonomous racing platform, the control message is a velocity
v and steering angle ω.

B. Trajectory Generation

Trajectories are generated by applying zero-mean gaussian
noise ϵ to a control input sequence u which controls the
steering input ω and velocity v. The standard deviations σv

and σω are tunable parameters which control how far the
trajectories deviate from the original control input sequence.
Each of the control input sequences are clamped to ensure that
the trajectories are physically feasible.

We utilize the kinematic bicycle model updated by euler
step where the state space is X = [x, y, θ] and control space
is U = [v, ω], where x, y are coordinates in 2D space, v is
velocity, θ is heading angle, ω is steering angle, and L is the
wheelbase. The state transition for the model is as follows:

ẋ = v cos(θ)

ẏ = v sin(θ)

θ̇ = v
tanω

L

(1)

C. Cost Function

For each point in the trajectory, a quadratic cost is applied to
encourage conformity to the given race line. The closest point
in the race line is used as a reference point for position (x, y),
orientation (yaw), and velocity (v). A high cost is applied for
any point in the trajectory that overlaps with the environment
map. The environment map is dilated to encourage obstacle
avoidance and reduce scrapes. The cost function below is
applied to every step in the trajectory for the stage cost, as
well as the terminal cost at the last step to encourage the
vehicle to end on the race line where k is the trajectory and t
is the timestep.

S(k) = Qf (zT,ref − zT )
2 +Qcollisionis collided(zT )+

T∑
t=0

Q(zt,ref − zt)
2 +Qcollisionis collided(zt)

(2)

D. Control Action

Each of the control input sequences are weighted based on
the optimal information theoretic control law described in eq.
22 of [9] and shown belos. Where each control input sequence
is weighted by the cost of the minimum cost input sequence
and the weighting is controlled by a parameter λ which is
more restrictive as it gets smaller. A low lambda creates a
highly reactive control algorithm, with lower stability and a
high lambda gives greater stability, but with less reaction.
These weights are used to compute a weighted average of
noise to add to the original control input sequence which is
updated and used for the next control action.

w(V ) =
1

η
exp(− 1

λ
(S(V ) + λ

T−1∑
t=0

(ût − ũt)
TΣ−1vt)),

ut = EQŨ,Σ
[w(V )v(t)]

(3)

IV. EXPERIMENTS

We implemented MPPI using three different methods. We
used NumPy on the CPU, CuPy on the GPU, and PyTorch on
the GPU.



Fig. 2. A visualization of the MPPI algorithm on the F1Tenth vehicle in simulation. In the first image multiple blue trajectories are rolled out using the KBM
model. These trajectories are evaluated as shown in the second image based on their deviation from the raceline and collision with obstacles denoted by the
black and white overlay. In the third image weighted sum is performed for each trajectory to produce the final trajectory in red.

Fig. 3. AIMS lockers map with obstacles.

The metrics that we use to evaluate our performance will
be the laptimes of RRT and MPPI. We will use our map of
the locker area outside of AIMS for both simulation and real-
world environments. For the racetrack, we will test our RRT
and MPPI algorithms on a clear, empty racetrack around the
AIMS lockers. We also place obstacles along the racetrack
to demonstrate obstacle avoidance for both environments. An
image of the simulation obstacles is shown in Fig. 3. For
the real-world environment, we placed boxes to block the
reference raceline that the car would usually take.

The second performance metric that we will evaluate is
computation time. We believe that an advantage of MPPI is
that we are able to parallelize the heavy computation on the
GPU. Therefore, we will measure the publishing frequency
of RRT, MPPI on the CPU, and the two implementations of
MPPI on the GPU.

V. RESULTS

A. Lap time

Based on the results in Table I, we can see that MPPI was
able to achieve a faster lap time than RRT for both racetracks
with/without obstacles. These values were measured based
on the performance in the real-world environment. From the
videos, we can see that the overall movement of MPPI is much
smoother than that of RRT. Additionally, MPPI is able to avoid
obstacles in a much more efficient way than RRT, which takes
lots of unnecessary turns.

B. Computation time

The computation times for all the methods that we im-
plemented are shown in Table II. The values represent the
publishing frequency, or how many times our algorithm pub-
lished an AckermannDriveStamped message to the car. The
parameters that we varied for these experiments were the
number of MPPI trajectories we generated and the number
of RRT iterations. Based on these values, we show that for
the same number of MPPI trajectories and RRT iterations,
the CPU MPPI implementation achieves a slightly higher
frequency than RRT. This may be because RRT has a higher
algorithmic time complexity than the vectorized version of
MPPI, since we have to construct and search a tree of N nodes.

Our GPU implementations on CuPy and PyTorch were not
able to speed up the computation time from the CPU MPPI. In
order to transfer our CPU MPPI onto the GPU, we made sure
to convert all of the large matrices into CuPy/PyTorch data
structures. This included the matrices that stored the optimal
raceline reference points, the noise we generated to sample
trajectories, and the state of the robot based on the sampled
trajectories. With these data structres on the GPU, we were
able to perform computations in parallel. We believe that the
main reason for the performance decrease is the overhead
caused by transferring data from the CPU to the GPU. The
advantages of the GPU over CPU operations appears once we
have very large data structures that we can operate on in batch.



In MPPI, we are working with a relatively low number of
trajectories and trajectory steps, so the overhead of transferring
data to the GPU dominates and creates a bottleneck.

Furthermore, we tested MPPI by generating a large number
of trajectories, as shown in Table III. Based on this table,
we can see that with generating 1,000 trajectories, the NumPy
method suffers from a massive performance decrease, whereas
the CuPy and PyTorch publishing frequency remains relatively
constant from the Table II values. With 10,000 trajectories,
the CPU MPPI continues to slow down and the fastest
method becomes the PyTorch-based MPPI implementation.
This demonstrates that the advantage of MPPI occurs when
we are operating with a very large number of trajectories.
With this in mind, however, we noticed that a higher number
of trajectories does not correlate to better racing performance.
The simulation and real-world experiments were only using
100 sampled trajectories. Therefore, we believe that for this
domain of autonomous racing, a CPU-based MPPI algorithm
with a relatively low number of trajectories is optimal.

Method Time (seconds)
MPPI 23.83
MPPI with Obstacles 25.33
RRT 42.93
RRT with Obstacles 43.91

TABLE I
LAP TIMECOMPARISON OF MPPI AND RRT WITH AND WITHOUT

OBSTACLES

Method 50 traj/iter 100 traj/iter 150 traj/iter
MPPI (CPU) 35.515 Hz 23.658 Hz 18.196 Hz
MPPI (CuPy) 3.771 Hz 4.265 Hz 3.996 Hz
MPPI (PyTorch) 4.339 Hz 4.303 Hz 4.546 Hz
RRT 34.211 Hz 15.411 Hz 8.616 Hz

TABLE II
COMPUTATION TIME (PUBLISHING FREQUENCY) COMPARISON.

Method 1000 Trajectories (Hz) 10000 Trajectories (Hz)
NumPy 4.381 0.776
CuPy 1.843 0.327
PyTorch 4.302 1.947

TABLE III
PUBLISHING FREQUENCY FOR A LARGE NUMBER OF MPPI TRAJECTORIES

VI. CONCLUSIONS & FUTURE WORK

This work serves as a baseline implementation of MPPI on
the F1Tenth vehicle. Many improvements could be made to
improve the performance of the algorithm and push the limits
further. Such as better modeling and prediction through the dy-
namic bicycle model and fourth order Runge-Kutta prediction
to create more accurate predictions while accounting for forces
on the vehicle. A term could also be added to the cost to limit
control effort. A trajectory library could be implemented to
pre-compute control inputs and trajectories while maintaining
a reasonable distribution of trajectories. The cost map could
also be represented by a gradient to encourage trajectories

to avoid obstacles better. Finally, the parallelization could be
further explored on the GPU to enable faster performance.

We demonstrate that MPPI not only yields faster and
smoother lap times than RRT, but also runs more efficiently
on a CPU for the moderate trajectory counts (∼ 100) used in
practice. We found that GPU-accelerated MPPI only outper-
forms the CPU implementation at very large trajectory counts
(∼ 10,000). However, generating lots of trajectories does not
necessarily translate to better racing performance. We believe
that deploying MPPI in high-speed autonomous racing con-
tributes in pushing the limits of model-based stochastic control
under extreme dynamics, which can accelerate advances in
safety-critical applications.

REFERENCES

[1] https://github.com/f1tenth/f1tenth racetracks
[2] J. J. Kuffner and S. M. LaValle, ”RRT-connect: An efficient approach to

single-query path planning,” Proceedings 2000 ICRA. Millennium Con-
ference. IEEE International Conference on Robotics and Automation.
Symposia Proceedings , San Francisco, CA, USA, 2000, pp. 995-1001
vol.2, doi: 10.1109/ROBOT.2000.844730.

[3] Karaman S, Frazzoli E. Sampling-based algorithms for optimal
motion planning. The International Journal of Robotics Research.
2011;30(7):846-894. doi:10.1177/0278364911406761

[4] G. Williams, P. Drews, B. Goldfain, J. M. Rehg and E. A.
Theodorou, ”Aggressive driving with model predictive path in-
tegral control,” 2016 IEEE International Conference on Robotics
and Automation (ICRA), Stockholm, Sweden, 2016, pp. 1433-1440,
doi: 10.1109/ICRA.2016.7487277. keywords: Trajectory;Optimal con-
trol;Entropy;Vehicles;Prediction algorithms;Q measurement;Stochastic
processes,

[5] P. E. Hart, N. J. Nilsson and B. Raphael, ”A Formal Basis for the
Heuristic Determination of Minimum Cost Paths,” in IEEE Transactions
on Systems Science and Cybernetics, vol. 4, no. 2, pp. 100-107, July
1968, doi: 10.1109/TSSC.1968.300136.

[6] G. Williams, B. Goldfain, P. Drews, J. M. Rehg, and E. A. Theodorou
”Autonomous Racing with AutoRally Vehicles and Differential Games”,
2017

[7] J. H. Yang and H. D. Choi, ”Cost-Based MPPI: Enhancing the Ef-
ficiency of MPPI Controllers in 3D Space for UAV Control,” 2024
24th International Conference on Control, Automation and Systems
(ICCAS), Jeju, Korea, Republic of, 2024, pp. 147-152, doi: 10.23919/IC-
CAS63016.2024.10773101.

[8] E. Arruda, M. J. Mathew, M. Kopicki, M. Mistry, M. Azad,
and J. L. Wyatt authored the paper ”Uncertainty averse push-
ing with model predictive path integral control”. 2017 IEEE-RAS
17th International Conference on Humanoid Robotics (Humanoids),
doi:10.1109/humanoids.2017.8246918

[9] Williams, G., Drews, P., Goldfain, B., Rehg, J. M., & Theodorou, E.
A. (2017). Information Theoretic Model Predictive Control: Theory and
Applications to Autonomous Driving. https://arxiv.org/abs/1707.02342

[10] G. Williams, P. Drews, B. Goldfain, J. M. Rehg and E. A.
Theodorou, ”Aggressive driving with model predictive path integral
control,” 2016 IEEE International Conference on Robotics and Au-
tomation (ICRA), Stockholm, Sweden, 2016, pp. 1433-1440, doi:
10.1109/ICRA.2016.7487277.

[11] Mehdi Testouri, Gamal Elghazaly, and Raphael Frank. Towards a
Safe Real-Time Motion Planning Framework for Autonomous Driving
Systems: An MPPI Approach. arXiv preprint arXiv:2308.01654, 2024.
https://arxiv.org/abs/2308.01654.

https://arxiv.org/abs/2308.01654

	Introduction
	Related Works
	Approach
	Inputs and Outputs
	Trajectory Generation
	Cost Function
	Control Action

	Experiments
	Results
	Lap time
	Computation time

	Conclusions & Future Work
	References

